HP BOUNDS FOR SPECTRAL MULTIPLIERS

ON RIEMMANIAN MANIFOLDS

ATHANASIOS G. GEORGIADIS

ANALYSIS CONFERENCE. IOANNINA GREECE

• Let $m(\lambda)$ be a bounded pasurable function in \mathbb{R}^n and let T_m be the operator defined by

$$\widehat{T_m f}(\lambda) = m(\lambda)\widehat{f}(\lambda).$$

The Mikhlin-Hörmander multiplier theorem (M-H 1960) asserts that if the multiplier $m(\lambda)$ satisfies the condition

$$\sup_{\lambda \in \mathbb{R}^n} |\lambda|^{\alpha} |\partial^{\alpha} m(\lambda)| < \infty,$$

for any multi-index α , with $|\alpha| \leq \left[\frac{n}{2}\right] + 1$, then T_m is bounded on L^p , $1 and from <math>L^1$ to L^1_w .

Calderón and Torchinsky extending this theorem (C-T 1977) , proved that if the multiplier $m(\lambda)$ satisfies the condition

$$\sup_{\lambda \in \mathbb{R}^n} |\lambda|^{\alpha} |\partial^{\alpha} m(\lambda)| < \infty,$$

for any multi-index α , with $|\alpha| \le n \left[\left(\frac{1}{p} - \frac{1}{2} \right) \right] + 1$, then T_m is Lounded on H^p , 0 .

- There are many generalizations of those theorems. For example on Manifolds (M-H), Discrete groups, Lie groups, Nilpotent groups, Symmetric spaces, Graphs, Stratified groups e.a....
- My generalization (2010) of (C-T) is on the context of Riemannian manifolds
- Let M be a n-dimensional, complete, noncompact Riemannian manifold with C^{∞} -bounded geometry. We denote by d(.,.) the Riemannian distance, by dx the Riemannian measure, by B(x,r) the ball centered at $x \in M$ with radius r > 0 and by V(x,r) its volume.

Date: May 28, 2010.

 We assume that M satisfies the doubling volume property, i.e. there is a constant c > 0, such that

$$(0.1) V(x,2r) \le cV(x,r), \ \forall \ x \in M, \ r > 0.$$

From (0.1) it follows that there exist constants c, D > 0, such that

(0.2)
$$\frac{V(x,r)}{V(x,t)} \le c \left(\frac{r}{t}\right)^D, \ \forall x \in M, \ r \ge t > 0.$$

• Let us denote by Δ the Laplace-Beltrami operator on M and by $p_t(x,y)$, t>0, $x,y\in M$, the heat kernel of M, i.e. the fundamental solution of the heat equation $\partial_t u=\Delta u$. We assume that $p_t(x,y)$ satisfies the following estimates: there are constants c,c'>0 such that

(0.3)
$$p_t(x, y) \le c' \frac{e^{-d(x,y)^2/ct}}{V(x, \sqrt{t})},$$

for all t > 0 and $x, y \in M$, and there are constants $c_1, c_2 > 0$ and $\gamma \in (0, 1)$, such that for all t > 0, and $x, y, z \in M$, with $d(y, z) \le \sqrt{l}$,

$$(0.4) |p_t(x,y) - p_t(x,z)| \le \frac{c_1 e^{-c_2 d(x,y)^2/t}}{V(x,\sqrt{t})} \left(\frac{d(y,z)}{\sqrt{t}}\right)^{\gamma}.$$

• The Laplace-Beltrami operator Δ on M is a positive and selfadjoint operator on $L^2(M)$. Thus, by the spectral theorem

$$\Delta = \int_0^\infty \lambda dE_\lambda,$$

where dE_{λ} is the spectral measure on M.

If $m:\mathbb{R}\to\mathbb{R}$ is a bounded Borel function, by the spectral theorem we can define the operator

$$m(\Delta) = \int_0^\infty m(\lambda) dE_\lambda,$$

which is a bounded operator on $L^2(M)$, with $||m(\Delta)||_{2\to 2} \le ||m||_{\infty}$. The function m is called a multiplier and the operator $m(\Delta)$, is called a spectral multiplier.

· Let us set,

$$p_0 = \frac{D}{D + \gamma},$$

and

$$A = A(p) = D\left(\frac{1}{p} - \frac{1}{2}\right) + \varepsilon, \ \varepsilon > 0,$$

for all $p \in (p_0, 1]$. Note that in case when $\operatorname{Ric}(M) \geq 0, p_0 = \frac{n}{n+1}$.

• Let us denote by $C^A(\mathbb{R})$ the Lipschitz space of order A > 0, and by $H^p(M)$ the Hardy space. Finally, let us fix a function $0 \le \phi \in C^{\infty}(\mathbb{R})$, with

$$\phi(t) = 1, \ \forall t \in [1, 2], \ \phi(t) = 0, \ t \in \left(\frac{1}{2}, 4\right)^c.$$

In the present work we prove the following

• theorem: Let M be a Riemannian manifold as above and let $m(\lambda)$, $\lambda \in \mathbb{R}$, be a multiplier satisfying

(0.5)
$$\sup_{t>0} ||\phi(.)m(t.)||_{\mathcal{C}^{A(p)}} < \infty, \ p \in (p_0, 1]$$

Then the operator $m(\Delta)$ is bounded on H^p .

We note that by interpolation and duality, from Theorem it follows that $m(\Delta)$ is bounded $L^p(M)$, for 1 , and on <math>BMO(M).

- exg. $\Delta^{i\beta}$, $\beta \in \mathbb{R}$.
- If $p \in (p_0, 1]$, we say that a function a is a p-atom, if there is a ball B(y, r) such that

(0.6)
$$supp(a) \subseteq B(y,r), \ ||a||_{\infty} \le V(y,r)^{-1/p}$$
 and $\int_M a(x)dx = 0$. From (0.6) we get that

(0.7)
$$||a||_q \le V(y,r)^{(1/q)-(1/p)}, \quad q \ge 1.$$

• We need first to define the Lipschitz space \mathcal{L}_{α} , $\alpha > 0$. We say that $f \in \mathcal{L}_{\alpha}$, if there is a constant c > 0 such that for every ball B and $x, y \in B$, we have

$$(0.8) |f(x) - f(y)| \le c|B|^{\alpha}.$$

The norm $||f||_{\mathcal{L}_{\alpha}}$ is defined as the smallest of those constants ϵ and makes \mathcal{L}_{α} , a Banach space.

For $p \in (p_0, 1)$ we set $\alpha = (1/p) - 1$. Then we define H^p as the space of those functionals $f \in \mathcal{L}'_{\alpha}$ which can be written as $f = \sum_{n=0}^{\infty} \lambda_n a_n$, where $(\lambda_n) \in \ell^p$ and (a_n) is a sequence of p-atoms. We set

$$||f||_{H^p} = \inf \left\{ \left(\sum_{n=0}^{\infty} |\lambda_n|^p \right)^{1/p}; \ f = \sum_{n=0}^{\infty} \lambda_n a_n \right\}.$$

We note that the dual H^p is \mathcal{L}_{α} and that for every $f \in \mathcal{L}_{\alpha}$, and for every ball B and $y \in B$, we have that

$$(0.9) ||f - f(y)||_{L^2(B)} \le ||f||_{\mathcal{L}_{\alpha}} |B|^{(1/p) - (1/2)}.$$

Strategy of the proof

(1) Let p be in $(p_0, 1)$, a be a p-atom supported on B(y, r), $y \in M$, r > 0 and $\psi \in C_0^{\infty}$. By the quality argument it suffices to show that

$$|\langle m(\Delta)a,\psi\rangle| \leq c||a||_{H^p}||\psi||_{\mathcal{L}_\alpha} = c||\psi||_{\mathcal{L}_\alpha},$$

(2) Cancelation property: For every p-atom a, we have

$$\int_{M} (m(\Delta)a)(x)dx = 0.$$

Then we write

(0.10) $\langle m(\Delta)a, \psi \rangle = \langle m(\Delta)a, \psi - \psi(y) \rangle.$

and $\psi - \psi(y) = \psi_1 + \psi_2$, supported on ball B(y, 4r) and on its complement respectively.

We have then

 $\langle m(\Delta)a, \psi \rangle = \langle m(\Delta)a, \psi_1 \rangle + \langle m(\Delta)a, \psi_2 \rangle.$

(3) By the Cauchy-Schwarz inequality we get that $|\langle m(\Delta)a, \psi_1 \rangle| \leq$

$$||m(\Delta)||_{2\to 2}|_{r}|_{2}||\psi-\psi(y)||_{L^{2}(B(y,4r))}$$

Using (0.7) and (0.9), it follows from the doubling property that

$$|\langle m(\Delta)a, \psi_1 \rangle| \le c||\psi||_{\mathcal{L}_{\alpha}}.$$

(4) We cut the multiplier on compactly supported terms m_j and

$$|\langle m(\Delta)a, \psi_2 \rangle| \le \sum_{j < N+4} |\langle m_j(\Delta)a, \psi_2 \rangle| + \sum_{j \ge N+4} |\langle m_j(\Delta)a, \psi_2 \rangle|,$$

where $N \in \mathbb{Z}$ be such that

 $(0.12) 2^{N/2} \le r < 2^{(N+\tau)/2}.$

(5) The second sum is estimated simillarly with the case of graphs.

(6) For the first sum because, $B(y, 4r)^c \subseteq \bigcup_{q \ge N+4} A_q(y)$, where

$$A_q(y) = B(y, 2^{(q+1)/2}) - B(y, 2^{q/2}),$$

we take by the Cauchy-Swartz

$$|\langle m_j(\Delta)a, \psi_2 \rangle| \le$$

$$\sum_{q \ge N+4} ||m_j(\Delta)a||_{L^2(A_q(y))} ||\psi_2||_{L^2(A_q(y))},$$

and by Minkowski inequality, $||m_j(\Delta)a||_{L^2(A_n(y))} \le$

$$||a||_1 \sup_{d(z,y) \le r} ||K_j(.,z)||_{L^2(A_q(y))}.$$

Where K_j is the kernel of $m_j(\Delta)$. It suffices to estimate the norm

$$||K_j(.,z)||_{L^2(A_q(y))}$$

but this is a consequence of heat kernel's estimates. In fact we have if $j \leq q$,

$$(0.13) ||K_j(.,y)||_{L^2(B(y,2^{q/2})^c)} \le \frac{c||m_j||_{\mathcal{C}^A} 2^{-A(q-j)/2}}{\sqrt{V(y,2^{j/2})}}.$$

Putting all together with the relations (0.7),(0.9), using the doubling volume property and summing over q and j we have that

$$|\langle m(\Delta)a, \psi_2 \rangle| \le c||\psi||_{\mathcal{L}_{\alpha}}(q.e.d.)$$

Partially supported from Onaseio foundation Greece.